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MODELING OF DIFFUSION THROUGH A NETWORK: A NEW APPROACH USING
CELLULAR AUTOMATA AND NETWORK SCIENCE TECHNIQUES

EXECUTIVE SUMMARY

Scientists and mathematicians have been trying for centuries to correctly model behavior
of groups of people. Behavior can vary from something as simple as what happens if one
member of the group leaves the group to something as complicated as the effect of a natural
disaster on a group’s cohesion. This paper focuses on the behavior associated with diffusion or
spread throughout a group. Exactly what is spreading throughout the group is not defined; it
could be a disease or it could be a piece of information. Currently there are several mathematical
models that predict how diffusion through a group occurs. Some have been used to predict
infection rates in large populations; others have been used to pinpoint individuals that act as key
information spreaders such as a local gossiper. The goal of this paper is to offer an alternative
method of modeling this diffusion and provide some insight into why this alternative might be
more accurate.

Procedure

Many of the current models of diffusion assume random mixing. This would be
equivalent to putting a drop of dye in a glass of water and stirring it. The dye will diffuse
throughout the entire glass through random movement of the water molecules. Another large
segment of these models assume a detailed knowledge of the underlying network connections.
For instance an airline company might know exactly which cities had flights connecting them
and so would have a detailed understanding of how people diffused around the globe by air.
Neither of these two assumptions, random mixing and knowledge of network connections, is
always valid. Consider the example of the spread of a disease through a city. To assume that
any two individuals in the city have equal chance of spreading the disease as any other two
individuals would be an incorrect assumption. Certainly people that go to the same office, the
same grocery store, or even live in the same house are more likely to spread disease than two
people who do not share any such spaces. To assume detailed knowledge of the network of
interactions would also likely be an incorrect assumption. Knowing who interacts with whom is
possible in a small office or school class room, but for an entire city the possible number of
connections grows too large.

Findings

The tool presented in this paper uses a cellular automata (CA) based model to avoid both
invalid assumptions. Instead of assuming random mixing, the CA model assumes random
connections. Since connections don’t change they better represent relationships and interactions
that exist in reality. Also, only the general connectedness of a network needs to be known to
apply random connections. Knowing how many interactions people have on average is a lot
easier to find than knowing all interactions. Thus the CA model avoids both assumptions,
creating a better model in the process.

We validate the CA tool by comparing its output against well known SIS and SIR
models. We then go on to use the CA tool to show the important effects that may be masked by
assuming random mixing. There are definite variations that occur as a result of the underlying

Vii



connections in any network. This tool takes those into effect by keeping the network
connections static throughout one simulation period and allowing batch runs so that multiple
variations of network connections may be tested under similar conditions and then the results
averaged. In the end, this research project successfully concludes with the creation of new
method to modeling diffusion through a network and justifying its existence with a critique on
existing models.

Academic Presentations without Conference Proceeding

Kinney, S. “Exploration of Diffusion and Infection Models: Sensitivity to Topology and Initial
Conditions.” SDUMC, St. Francis College, New York, NY (2010).
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MODELING OF DIFFUSION THROUGH A NETWORK: A NEW APPROACH USING
CELLULAR AUTOMATA AND NETWORK SCIENCE TECHNIQUES

l. INTRODUCTION

Network science is an emerging field of study that uses the scientific method to examine
an array of networks to derive a series of principles or theorems to describe the behavior of those
networks. The U.S. Army recently became interested in network science when the idea of
network-centric warfare came about in the late 1990s with the publishing of the book titled the
same (Alberts, Garstka, & Stein, 1999). Leading the way in the creation of network-centric
operations, the U.S. Army has created a Network Science Center at our very own U.S. Military
Academy.  Traditionally the focus of network-based operations has been on friendly
communication networks and information distribution on the battlefield. This idea stems from
the theory that information superiority, just like other more familiar terms (air superiority, fire
superiority), is the next step the U.S. Military must work to accomplish in order to dominate in

the information age.

Through network science the U.S. Army hopes to develop methods to increase the
accuracy, timeliness, and relevance of information that it uses to win the nation’s wars.
However, network science can also be used to better understand enemy forces. For instance,
knowing how the communication networks of the enemy work allows one to target only the most
critical components of that network to bring down the whole system. Also, knowing how the
enemy communicates provides a tool that can be used to predict the enemy response. So not
only does the study of networks afford the U.S. Army greater information sharing abilities, it

could also give a better understanding of enemy operations and communications systems.
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Figure 1 Superior Information Position (From Alberts, Garstka, & Stein, 1999)

Beyond the specific military applications of networks, there are several other possible
uses. Like the spread of information, modeling the spread of disease through a population is
uniquely suited to study by network science. Modeling the flow of products throughout a
consumer network or the delegation throughout a corporate network are also possible areas
where network science can offer help. In the information age there are now so many different
networks that network study can be applied to all kinds of fields. So while still in its infancy,
network science holds the promise of finding unique solutions to complex problems in an

increasingly connected world.

Scientists and mathematicians have been trying for centuries to correctly model behavior
of groups of people. Behavior can vary from something as simple as what happens if one
member of the group leaves the group to something as complicated as the effect of a natural
disaster on a group’s cohesion. This paper focuses on the behavior associated with diffusion or
spread throughout a group. Exactly what is spreading throughout the group is not defined; it

could be a disease or it could be a piece of information. Currently there are several mathematical



models that predict how diffusion through a group occurs. Some have been used to predict
infection rates in large populations; others have been used to pinpoint individuals that act as key
information spreaders such as a local gossiper. The goal of this paper is to offer an alternative
method of modeling this diffusion and provide some insight into why this alternative might be

more accurate.

Many of the current models of diffusion assume random mixing. This would be
equivalent to putting a drop of dye in a glass of water and stirring it. The dye will diffuse
throughout the entire glass through random movement of the water molecules. Another large
segment of these models assume a detailed knowledge of the underlying network connections.
For instance an airline company might know exactly which cities had flights connecting them
and so would have a detailed understanding of how people diffused around the globe by air.
Neither of these two assumptions, random mixing and knowledge of network connections, is
always valid. Consider the example of the spread of a disease through a city. To assume that
any two individuals in the city have equal chance of spreading the disease as any other two
individuals would be an incorrect assumption. Certainly people that go to the same office, the
same grocery store, or even live in the same house are more likely to spread disease than two
people who do not share any such spaces. To assume detailed knowledge of the network of
interactions would also likely be an incorrect assumption. Knowing who interacts with whom is
possible in a small office or school class room, but for an entire city the possible number of

connections grows too large.

The tool presented in this paper uses a cellular automata (CA) based model to avoid both
invalid assumptions. Instead of assuming random mixing, the CA model assumes random

connections. Since connections don’t change they better represent relationships and interactions



that exist in reality. Also only the general connectedness of a network needs to be known to
apply random connections. Knowing how many interactions people have on average is a lot
easier to find than knowing all interactions. Thus the CA model avoids both assumptions,

creating a better model in the process.

We validate the CA tool by comparing its output against well known SIS and SIR
models. We then go on to use the CA tool to show the important effects that may be masked by
assuming random mixing. There are definite variations that occur as a result of the underlying
connections in any network. This tool takes those into effect by keeping the network
connections static throughout one simulation period and allowing batch runs so that multiple
variations of network connections may be tested under similar conditions and then the results
averaged. In the end, this research project successfully concludes with the creation of new
method to modeling diffusion through a network and justifying its existence with a critique on

existing models.



MODELING OF DIFFUSION THROUGH A NETWORK: A NEW APPROACH USING
CELLULAR AUTOMATA AND NETWORK SCIENCE TECHNIQUES

Il. BACKGROUND

A Graph theory

Mathematics has provided a number of different models to describe diffusion through a
network. Since networks are generally constructed either to model or facilitate diffusion, being
able to describe this diffusion in a numerical expression is of great importance. We begin with a

review of some basic ideas in graph theory.

A graph is a collection of vertices (or nodes) and edges that connect pairs of vertices
known as neighbors. A graph may be directed, meaning flow from one vertex to another is
restricted to only one direction, or it may be undirected, in which case flow is unrestricted in
direction between nodes. Nodes have a number of attributes that conveniently describe their
place within a graph and relative number of neighbors. The degree of a node is equal to the
number of neighbors that node has. Nodes also typically have some kind of state that depends
on the type of network being modeled. A disease-tracking graph may have nodes with states
such as: infected, immune, not infected, recovered from infection. The undirected graph in

Figure 2 has four nodes, with node 1 having a degree of three while node 2 has a degree of one.

Figure 2 Graph



B. Existing Diffusion Models

1. Threshold v. Independent Cascade Models?!

Two general types of diffusion models are the threshold and independent cascade
models. These models are named for the conditions by which a node changes state. The first
model gives each node its own threshold which must be reached before it will change state. The
independent cascade model gives each node a single chance to change the state of neighboring

nodes; each node is acting independently of the others.

In the threshold model each neighbor may be given a certain weight with which it will
affect its neighbor(s). For a particular node to change state the combined weight of that node’s
neighbors acting on it must meet the threshold, as specified in Inequality 1.

bv,w < Hw

degree of w

Inequality 1 Threshold Weights (From Kempe, Kleinberg, & Tardos, 2003)

In this summation, the weights (b) of the neighbors (v) of w are added together. If they are less
than or equal to the threshold 6 of the node w then the node will not change state. This

computation is done for each node at each time step (t).

The second type of model, the independent cascade model, simply gives each of the
neighbors of v some independent probability of affecting the state of v. For example if a
neighbor of w called v becomes active at time t, it is given a single chance to activate w with a

random probability p(v). If v succeeds, then w becomes active at time t + 1. If there are multiple

1 Kempe, Kleinberg, & Tardos, 2003, 138



neighbors of w that become active at time t then they are all given a chance to activate w in a

random order.

2. Bass Model?

One of the earlier models of diffusion is known as the Bass Model (Jackson, 2008). This
model does not involve network science but is a commonly used and well known model of
diffusion. The model depends on two parameters: the first is the rate (p) at which nodes
spontaneously become active and the second is the rate (g) at which nodes become active due to
the activity of neighboring nodes. For simplicity it can be assumed that there are only two states,
active and inactive. The model predicts F(t), the number of active nodes at time t by the

following equation:

1 — e_(p"l'Q)t

F(t) =
®) 1+%e—(p+q)t

Equation 2 Bass Model (From Jackson, 2008)

In this equation, p is the rate of spontaneous activity and q is the rate of activation due to
surrounding activity. Using this model the process of calculating an approximation for the total

number of active nodes at any time is quite straight forward.

3. SIS & SIR Model?3

Another diffusion model known as the SIS model (Susceptible, Infected, and Susceptible)

is more commonly associated with modeling the spread of disease. This model is based on a

2 Jackson, 2008, 187
3 1bid., 196.



node being either infected or not infected but susceptible to further infection. This model differs
from the SIR model (Susceptible, Infected, and Recovered) in that the SIR model incorporates a
state in which a node is no longer susceptible to infection either through immunity or death.
Important to both of these models is the fact that random mixing of individuals is assumed, so
that there are no predefined pathways for disease spread. The SIS model is the simpler of the
two since all nodes return to their original state after infection. Its measure of the average
infection rate is rather simple to calculate and depends on two factors. The first is the degree
distribution P, and the second is the fraction of individuals of degree d who are infected, p(d).

Then, the average infection rate of the population is

p = 2d=012..P(A)p(d).
Equation 3 SIS Model (From Jackson, 2008)
The SIR model, of which the Kermack-McKendrick is a common type, is a little more

complex. It consists of a system of nonlinear ordinary differential equations, one for each state a

node could be in: S (susceptible), I (infected/infectious), and R (removed)

dS(t)

— = bS(t) — vI(£)S(t)

dI(t)

— = vI(t)S(t) — cl(t)
dR(t)

P cl(t)

Equation 4 SIR Equations (From Weisstein)

where v is the infection rate, b is the birth rate, and c is the immunity rate. The behavior of this
model depends upon the ratio of the initially infected (S) times the infection rate (p) to the

recovery rate (),
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Equation 5 SIR Ratio (From Weisstein)

If this ratio is greater than 1, then each person who is infected will infect more than one other

person and thus the disease will spread. If it is less than 1, then the disease will die out quickly.

C. Cellular Automata

While the concept of cellular automata has no immediate relationship with diffusion
through a network it does have some specific applications to our particular objectives. A cellular
automata (CA) consists of a collection of cells that change over discrete time intervals according
to a system of rules. These rules are applied at each time step to decide the state at the next time
step. Each time step is known as a generation. Often changes in the cells are depicted in the
form of coloration, in its simplest form this may be a change from black to white or vice-a-versa.
Cells may be in a single line representing a one-dimensional environment, or they may be placed
in a grid to simulate a two-dimensional situation. There are no universal generic rules for
cellular automata, but often particular rules are applied in a manner similar to threshold models
described in the section 1. The state of a cell in a future generation often depends upon the cell’s
current state and the count of states of neighboring cells. In CA, neighboring cells are generally
defined as those cells directly adjacent to the cell in question. For instance in a two state system
a cell may enter state 2 in the next generation if in the previous generation the cell was in state 1

and had two neighbors in state 2.

11
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Figure 3 Cellular Automata
D. Objective and Research Question

The objective of this paper is to describe the design and implementation of a new method
for modeling spread of information. This method will seek to combine elements of both network
graphs and geographically-based models, building upon the theory of cellular automata. CA is
useful because the underlying network structure that connects cells and the time step logic
enables easy modeling of large or complex situations.

We use a custom-made form of CA, and interlace some ideas from network graphs such
as “wormhole” links that connect cells that are not adjacent. We also introduce some degree of
randomness into the system using probability distributions to determine whether information will
flow from a cell to its neighbor.

We verify the validity of the model by comparing it to current models already mentioned
in the above before using it to draw other conclusions about the diffusion in a network. The final
objective is the formulation of conclusions about diffusion through networks, which can be used

to evaluate current models with data generated by the CA tool.
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E. Justification of Study

In the Army, or indeed in any organization, communication is an aspect of leadership that
is highly valued. Much research has been done and money invested into the study of information
flow and communication between individuals and within a large group. Especially in the realm
of network science, the study of entities interacting as part of a larger group has unearthed
several useful models or methods for information spread. While these models often produce
useful and interesting results, they can be difficult to construct based on incomplete knowledge
of the edges in the network graph. Strictly geography-based models used for modeling spread
simply by proximity of the entities to one another fail to account for long-distance
communications that allow some entities to share information at a distance.

Outside of network science there are many models that don’t take into account any
underlying network when modeling diffusion. It is one of the goals of this paper to underscore
the importance of recognizing the underlying graph of a network or at the very least taking into
account some basic properties of that graph. One of the more visually appealing as well as easily
implemented methods for modeling spread geographically is through the use of CA. 1t is for
these reasons that a combination of CA and network theory will create a unique and useful model

of diffusion.

13



MODELING OF DIFFUSION THROUGH A NETWORK: A NEW APPROACH USING
CELLULAR AUTOMATA AND NETWORK SCIENCE TECHNIQUES

1. MODELING TOOLS

A major goal of this research project and one that took a vast amount of the time
available to complete it was the creation of a modeling tool from which to gather data. The
initial idea was to create a CA-based computer simulator that was customizable and easy to use.
Customization was easy to accomplish since the tool was built from the ground up and the ease
of use came mostly out of the GUI interface. Once the CA tool had been created and modified to
an acceptable point of operation, we created another Excel-based tool. This experimental tool
was based off of the recently constructed CA tool but instead of discrete states of 0 and 1 in CA,

its computations were based on probabilities.

A. Cellular Automata Tool

The CA tool, pictured in Figure 4, is designed to be easy to use and highly customizable.
It allows the user to modify the size of the CA universe and the number of generations to run. It
can run batch runs of various scenarios to allow easy computation of averages. The CA rules can
be modified to model different scenarios such as SIS or SIR scenarios. Even the connections
between cells can be modified using the available adjacency matrix or the default settings of left

and right adjacent neighbor connections may be used.

14
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Figure 4 Cellular Automata Tool

In the visual window each successive generation is displayed in the row below. Likewise
the state count window displays the total number of cells in each state in each generation by row.
In the adjacency table, filled in squares represent connections between cells in the visual window
and checking/unchecking the symmetric box can enforce symmetry in the adjacency matrix thus
making either a directed or undirected graph. Depending on the scenario, the adjacency table
may be either in a default configuration with left and right neighbor connections only, or may be
populated with a random fill of connections according to the level of connectedness desired.
Also, the default configuration may have additional random connections according to the desired
level of connectedness. The entire tool was built from scratch within Java, allowing for

complete customization.
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B. Experimental Excel Tool

The Excel model was created to explore specific questions inspired by the CA tool. Excel
is especially well-suited for CA modeling because it can easily be used to perform repeated
operations over a finite and discrete amount of time. This model focused on probabilities of
infection rather than discrete cell states of infected or uninfected, in order to examine the
approximate long-term behavior of the system. Figure 5 below depicts an example simulation of
a population of ten individuals. The initial infection rate was 20% and the chance of
transmission and recovery were 20% and 30% respectively. The adjacency matrix in the upper
right corner of the figure operates similarly to the matrix in the CA tool. The colors of the

columns indicate their infection rate with red being more likely to become infected and green

less likely.
A B < o £ 3 G M | i K L M N o e Qa it 5 T u
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Figure 5 Excel Model of Infection
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The entire model was built using formulas so that the initial infection rate, recovery and
transmission rates, as well as the percent connectedness of the network could easily be changed
to affect the whole model. There is no batch run ability for this model so computing overall
averages for a given scenario is not possible. There were some interesting results, however,

which will be examined in the findings section of this paper.
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MODELING OF DIFFUSION THROUGH A NETWORK: A NEW APPROACH USING
CELLULAR AUTOMATA AND NETWORK SCIENCE TECHNIQUES

V. Results

A. Validation

We Dbegin our discussion of results with a validation of the tool being used to model
diffusion. We will use the SIS and SIR models described above and compare the output to data
from computer simulations using our CA tool. This simplest of the two models (SIS) can

generally be described by the figure below:

Figure 6 Simulation and Solutions to SIS Model (From Ediger, 2010)

This figure depicts a simulation average, a numerical solution, and an analytical solution to the
SIS model measuring the number of infected nodes over time. As you can see, the curve exhibits
a logistical pattern. Similar results were obtained from an SIS model simulation using our

computer based CA:
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Figure 7 CA Simulation of SIS System

This simulation was created using two state cells (0 & 1) with neighboring cell connections and
additional random connections on the order of 0.5% of the total possible connections and a
universe of 100 cells. The simulation was run for 50 generations but is cut off in this graph as
there was no change in cell count after 8 generations. SIS rules were in place that allowed an
infected cell to transfer its infection to any connected cells and then become susceptible in
subsequent time steps.

Both the well known SIS model and the simulation run using our CA tool give similar
logistical patterns of infection growth rates. These curves correctly model an SIS sytem as the
infection starts off in exponential growth initially and then slowly levels off as the infection rate
nears the carrying capacity of the disease. The similarity of these two curves indicates that our

CA tool is a valid method of modeling diseases in an SIS system.
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Next, the tool was validated by modeling a more complicated model, the SIR model.
Curves for a SIR system as described in the previous section generally appear similar to the

curve below:

Figure 8 Deterministic Solution of SIR Model (From Chestnut, 2010)

This image was generated from a deterministic solution to the three differential equations that
make up the SIR model using MATLAB, starting with 1 infected individual and over 700

susceptible individuals. Below are the results of an SIR simulation using the CA tool:

SIR Model
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Figure 9 CA Simulation of SIR System
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This simulation was created using three states of cells with neighboring cell connections and a
universe of 50 cells. SIR rules were in place that allowed a susceptible cell to become infected
by any neighboring cell, remaining infected for a generation, and then transforming into a
resistant cell for the remainder of the time period.

The deterministic solution and the CA simulation are similar in appearance. Both figures
correctly model the initial rapid increase in infections resulting decrease in susceptibility and
follow on increase in resistance to infection. The infection rate slows and drops off as the
number of resistant individuals/cells becomes greater than the amount of susceptible ones. Both
the infection rate and susceptible rate approach zero as all individuals/cells become resistant to
the infection.

One important aspect to note about these two models is that they both are based on the
assumption of random mixing. CA does not allow for random mixing to occur. However, the
CA universe is set at the beginning of a run and does not change throughout the period of a
simulation. This is an important distinction to make as random mixing cannot always be
assumed. In reality it cannot be expected that an individual will spread an infection to an area to
which that individual has never been to. Disease is spread along channels of contacts and so the
spread of a disease is best modeled using an underlying graph of the connections between

people.
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B. Findings

Spread of Information through a Community

Obviously it is difficult if not impossible to know the underlying graph of a large network
especially if the nodes of that network are as uncontrollable as people can be. It is unrealistic to
expect a modeler to know all of the connections of such a graph but one could know the average
number of connections between nodes. The CA tool used in this paper allows for the
customization of the connectedness of the graph by randomly apportioning a percentage of the
total possible connections. This is not the same as random mixing: once the simulation begins
the connections do not change. Depending on the real life situation being modeled this may or

may not be a more accurate picture of what is being modeled.

One of the situations the CA tool was used to model that showed the importance of the
topology, was in the modeling of information flow from person to person through a community.
Using a few assumptions to create a very simple scenario, we modeled the flow of information
with a 100% chance of transmittance between 100 connected individuals. We then varied the
number of connections and the distribution of those connections to examine how the topology of

a network affected the diffusion.
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Figure 10 Information Flow through a Community Neighbors Only

The very uninteresting figure above shows the flow of information from one individual
through an entire community where each individual may transfer information to their two
immediately adjacent neighboring individuals. This would best be envisioned as a circle of 100
family houses where each family only communicated to the families directly to the right and left
of their own house. This is not a very realistic model but it provides a base line to compare
things to.

The next simulation eliminated the rigid left and right neighborhood structure and
replaced it with a random assortment of connections that consisted of 2% of the total possible
number of connections amongst the individual families. Since there are 100 families there are
10,000 possible connections, thus 2% of the possible connections represent 200 connections
which is the same number of connections in the simulation just prior with left and right

neighbors. In this simulation the number of connections is the same as the one before but the
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placement of those connections is not. The average result of this model of information flow

through a community (for 500 runs) is depicted in Figure 9 below.

Information Flow through a Community
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Figure 11 Information Flow through a Community 2% Connectedness

In this figure one does not see the same linear growth that occurred in the scenario
depicted by Figure 8. Additionally notice that the number of informed families does not nor will
it reach 100% of the total. This means that the entire community does not always receive the
information that is being passed along. Sometimes there are families that are isolated from the
rest of the community and thus cannot receive the information from anyone else in the
community. Also the time scale is much shorter in this scenario. Whereas in the previous
scenario it took 50-51 generations for the entire community to become informed, in this scenario
it took only eight generations for almost all of the community to become informed. Given these
results, it appears that randomizing the connections between families increased the rate of

transference but reduced the possibility of the entire community becoming informed.
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Reducing the number of connections to 1% of the total possible connections significantly
reduced the chance of the entire community from becoming informed but did not increase the
rate at which transference occurred. In Figure 12 below the results of an averaged 500 batch

runs of a community randomly connected with 1% of the total possible connections are depicted.
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Figure 12 Information Flow through a Community 1% Connectedness

The smaller number of connections increased the likelihood that some families would be entirely
disconnected from the group of the community that was connected to the one informed family.
The rate at which the community reached maximum information saturation occurred after 9
generations, which was not really different from the rate at which the 2% connectedness

simulation reached saturation.
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Disease Transmission and Expected Infection Rates

Another scenario tested was a threshold based model that was a variant of the SIS model.
Like the SIS model, each cell had two states, infected and susceptible, but there were also
transmission and recovery rates associated with each transformation of cell state. We initially
choose a transmission rate of 35% and a recovery rate of 50% because they gave significant
variability in the results. Figure 13 below depicts simulations using left and right neighbor
connections, and additional 0.0%, 0.50%, 1.0% or 1.50% connections determined at random.
Each simulation is given its own color with the number of infected individuals starting at 10%

and the number susceptible at 90% with a total population of 100 cells.
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Figure 13 35% Transmission Rate & Various Connectedness

From these results it appears that higher connectedness leads to higher rates of population

infection rates. What is surprising by these results is how big of a difference the added
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connections made in the infection rates. With just neighbor connections (0.0%) the infection
died off fairly quickly since recovery was more likely than transmission. But added connections
quickly overcame the difference in transmission and recovery rates allowing the infection to
have a long term presence in the population. Traditional models predict that with random mixing
a disease will die off if it has a significantly smaller transmission rate compared to recovery rate,
see equation 4 (SIR Ratio). But the CA simulation shows that the infection rate is highly
dependent upon the connectedness of the network; in fact, a disease may still persist in a

population with a transmission rate smaller than a recovery rate.
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Figure 14 50% Transmission Rate & Various Connectedness

When reversed, transmission rate of 50% and recovery rate of 35%, the expected
persistant infection rates emerge even with just left and right neighbor connections. The

additional random connections pushes the infection rate higher than 50%. These two scenarios
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show the immense effect that the connectedness of a network can have on the spread of a

pathogen through a community.

Excel Model Examples

Figure 5 (below again for reference) of the Excel Model of Infection showed clearly that
some individuals were more likely to become infected than others, even when all individuals in a

population initial have the same likelihood of infection.
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Clearly from this figure it is apparent that some individuals (9 & 10) are far more likely
to become infected than others (4 & 1). In fact, you can see in the figure below that the
distribution of infection likelihood is dramatically different for almost every member of this
population. The large ballooning of the infection rates for various cells shows exactly how much
the underlying connections can affect individual infection rates even with the same starting

infection rate.
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Figure 16 Average Infection Rates
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The graph of the overall average infection rate shows none of the variability that Figure
16 above shows. While being able to compute average infection rates for a population may be
useful for some statistical inferences, it really serves only to mask the large amount of variability
that exists in the population. This variability is important as we have seen and can result in

second and third order effects that would not be noticed with vast amounts of averaging.
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MODELING OF DIFFUSION THROUGH A NETWORK: A NEW APPROACH USING
CELLULAR AUTOMATA AND NETWORK SCIENCE TECHNIQUES

V. CONCLUSION AND RECOMMENDATIONS

From the information flow scenario and disease transmission scenario we can glean two
important lessons. The first is that the distribution of the connections in a network can have a
substantial impact on the diffusion of something, say information, through a network. The
second is that the connectedness of a network may also have a large effect on the spread of
something, say a disease, through a network. These two facts highlight the importance of the
underlying graph that represents a network when modeling movement of an impulse through that
network. This impulse may be a message or it may be a virus but it is clear from these

experiments that random mixing is not always the best assumption.

There are certainly times when random mixing is a good assumption to make. Within a
house for example it could reasonably be expected that individuals would moving about the
house fairly often and interacting with all individuals in the house at some point or another. This
would not be true on a national scale however because you would not expect a person on one
side of the country to interact often with individuals on another side of the country. In such a
situation it would be best modeled using a simulation that took into account something about the
underlying distribution of connections between people. This paper should serve to illustrate the
idea that random mixing models may not work well for many situations. Additionally this paper
presents an alternate way to simulate spread throughout a network if something about the

underlying network graph is known.
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A Recommendations for further study

There are many useful tools that can be derived from further research into this problem of
modeling diffusion. First, in order to refine the current modeling using CA, it would be useful to
model real life networks or at least random networks that are similar to real ones. There is
currently a lot of research in the area of pseudo-random graph generation and this project would
be more complete if it incorporated some of the findings of that research. The random networks
that were generated in this project are completely random and do not properly simulate the social
networks one might find in a community of people. For example, random small-world networks
would better model a social network but that would also require substantially more coding and
was not able to be incorporated into this project.

A second recommendation is further research into the development of theoretical models
of diffusions. This paper offers a simulation tool which can model diffusion but it does not lend
itself nicely to strictly theoretical mathematical models. A single formula or series of equations
to determine long term infection rates would be considerably more useful than a computer
simulation. Additional research into this project area would first focus on obtaining a theoretical
model for diffusion.

Another interesting idea to study in the future is the pinpointing of changes in behavior
based on topology. It is clear in this paper that certain changes in topology do have an effect on
diffusion. Finding out exactly which changes cause the change is another area yet to be
researched. It would be interesting and useful to know exactly where the tipping points are that
cause a diffusion model to exhibit such different results. Knowing the tipping points would
indicate what kind of diffusion behavior could be expected from the onset when examining a

particular network configuration.
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